Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome.

نویسندگان

  • G Seebohm
  • C R Scherer
  • A E Busch
  • C Lerche
چکیده

KCNQ1 inactivation bears electrophysiological characteristics different from classical N- and C-type inactivation in Shaker-like potassium channels. However, the molecular site of KCNQ1 inactivation has not yet been determined. KCNQ2 channels do not exert a fast inactivation in contrast to KCNQ1 channels. By expressing functional chimeras between KCNQ1 and KCNQ2 in Xenopus oocytes, we mapped the region of this inactivation to transmembrane domain S5 and the pore loop H5 and finally narrowed down the site to positions Gly(272) and Val(307) in KCNQ1. Exchanging these two amino acids individually with the analogous KCNQ2 residue abolished inactivation. Furthermore, a KCNQ1-like inactivation was introduced into KCNQ2 by mutagenesis in the corresponding region, confirming its relevance for the inactivation process. As KCNQ1 inactivation involves the regions S5 and H5, it exhibits a geography distinct from N- or C-type inactivation. Native cardiac I(Ks) channels comprising KCNQ1 and accessory MinK subunits do not inactivate because of the functional interaction of KCNQ1 with MinK. Mutations in KCNQ1 can lead to long QT1 syndrome, an inherited form of arrhythmia. The long QT1 mutant KCNQ1(L273F) displays a pronounced KCNQ1 inactivation. Here we show that when expressing mutant I(Ks) channels formed from KCNQ1(L273F) and MinK, MinK association no longer eliminates KCNQ1 inactivation. This results in smaller repolarizing currents in the heart and therefore represents a novel mechanism leading to long QT syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Novel KCNQ1 Frameshift Mutation and Review of the Literature among Iranian Long QT Families

Background: Long QT syndrome (LQTS) is characterized by the prolongation of QT interval, which results in syncope and sudden cardiac death in young people. KCNQ1 is the most common gene responsible for this syndrome. Methods: Molecular investigation was performed by DNA Sanger sequencing in Iranian families with a history of syncope. In silico examinations were performed for predicting the path...

متن کامل

Novel frameshift mutation in the KCNQ1 gene responsible for Jervell and Lange-Nielsen syndrome

Objective(s): Jervell and Lange–Nielsen syndrome is an autosomal recessive disorder caused by mutations in KCNQ1 or KCNE1 genes. The disease is characterized by sensorineural hearing loss and long QT syndrome. Methods: Here we present a 3.5-year-old female patient, an offspring of consanguineous marriage, who had a history of recurrent syncope and congenital sensorineural deafness. The patient ...

متن کامل

Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels.

KCNQ1 alpha-subunits coassemble with KCNE1 beta-subunits to form channels that conduct the slow delayed rectifier K+ current (IKs) important for repolarization of the cardiac action potential. Mutations in KCNQ1 reduce IKs and cause long-QT syndrome, a disorder of ventricular repolarization that predisposes affected individuals to arrhythmia and sudden death. Current therapy for long-QT syndrom...

متن کامل

Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome.

BACKGROUND The slowly-activating delayed rectifier current IKs contributes to repolarization of the cardiac action potential, and is composed of a pore-forming α-subunit, KCNQ1, and a modulatory β-subunit, KCNE1. Mutations in either subunit can cause long QT syndrome, a potentially fatal arrhythmic disorder. How KCNE1 exerts its extensive control over the kinetics of IKs remains unresolved OB...

متن کامل

Cellular Biology Long QT Syndrome–Associated Mutations in KCNQ1 and KCNE1 Subunits Disrupt Normal Endosomal Recycling of IKs Channels

Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serumand glucocorticoid-inducible kinase (SGK)1, which in turn stimulates IKs, a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in IKs channel (KCNQ1, KvLQT1, Kv7.1) or (KCNE1, IsK, minK) subunits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 17  شماره 

صفحات  -

تاریخ انتشار 2001